Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes

Abstract

Systems and methods make use of a view optimizing assembly having a deflector assembly with critical physical, pneumatic, and optical characteristics that make possible intra-operative defogging, surgical debris deflection, and cleaning of a laparoscope lens during minimally invasive surgery, while also maintaining visualization of the surgical site. The view optimizing assembly can incorporate a quick exchange feature, which makes possible a surgical method for maintaining clear visualization that includes the ability to make a quick exchange of laparoscopes having different operating characteristics (e.g., laparoscopes with different tip angles, lengths, or diameters) entirely on the sterile operating field and without interference with the preexisting surgical set-up on the sterile operating field. The view optimizing assembly integrates with the existing suite of minimally invasive instrumentation. It does not interfere with the surgical set-up, and it requires minimal change in the process or practice of a surgical operating room (OR) team.

Claims

1 . A view optimizing assembly comprising a sheath sized and configured to receive a laparoscope including on its distal end a laparoscopic lens with a field of view, the sheath having a wall with a wall thickness, the sheath having a distal end including an internal stop that prevents advancement of the laparoscopic lens beyond the distal end of the sheath, so that laparoscopic lens rests in a desired, generally coterminous alignment with the distal end of the sheath, a lumen in the wall of the sheath for conveying anhydrous carbon dioxide (CO2) from a source, the lumen being sized and configured to convey the anhydrous CO2 from the source at a flow rate of at least 1 liter per minute, and a deflector assembly at the distal end of the sheath communicating with the lumen, the deflector assembly projecting a prescribed distance beyond the distal end of the sheath, defining an air channel distance Y, and also overhanging the laparoscopic lens by a prescribed transverse distance, defining a deflection width X, together the air channel distance Y and deflection distance X creating a flow path for the anhydrous CO2 across the laparoscopic lens, the channel distance Y being at least equal to the wall thickness of the sheath and not exceeding 1.5 times the wall thickness of the sheath, the deflection width X being be at least equally to two times the channel distance Y, but not extending into the field of view, whereby anhydrous CO2 in the flow path prevents fogging and deflects smoke and surgical debris away from the field of view during surgery. 2 . A view optimizing assembly comprising a sheath sized and configured to receive a laparoscope including on its distal end a laparoscopic lens, a lumen in a wall of the sheath for conveying fluid, a tubing set having one end sized and configured to couple to a pressurized source of anhydrous CO2 and a second end coupled to a quick exchange coupler, the quick exchange coupler include a normally closed one way valve to normally prevent flow communication of the anhydrous CO2 from the source, a manifold carried by the sheath and communicating with the lumen, the manifold including a quick exchange coupling, the quick exchange coupling being sized and configured to mate with the quick exchange coupler of the tubing set, the quick exchange coupling of the manifold including an element that opens the normally closed one way valve in response to mating with the quick exchange coupler to convey anhydrous CO2 from the source into the lumen, and a deflector assembly at the distal end of the sheath in flow communication with the lumen, the deflector assembly creating a flow path for the anhydrous CO2 conveyed in the lumen across the laparoscopic lens. 3 . A surgical method comprising providing a first laparoscope having a laparoscopic lens and a first characteristic, providing a second laparoscope having a second laparoscopic lens and a second characteristic different than the first characteristic, providing only one tubing set having one end sized and configured to couple to a pressurized source of anhydrous CO2 and a second end coupled to a quick exchange coupler, the quick exchange coupler include a normally closed one way valve to normally prevent flow communication of the anhydrous CO2 from the source, providing a first sheath a sized and configured to receive the first laparoscope, the first sheath including a lumen in a wall of the first sheath for conveying fluid, a manifold carried by the first sheath and communicating with the lumen, the manifold including a quick exchange coupling, the quick exchange coupling being sized and configured to mate with the quick exchange coupler of the tubing set, the quick exchange coupling of the manifold including an element that opens the normally closed one way valve in response to mating with the quick exchange coupler to convey anhydrous CO2 from the source into the lumen, and a deflector assembly at the distal end of the first sheath in flow communication with the lumen, the deflector assembly creating a flow path for the anhydrous CO2 conveyed in the lumen across the laparoscopic lens of the first laparoscope, providing a second sheath a sized and configured to receive the second laparoscope, the second sheath including a lumen in a wall of the second sheath for conveying fluid, a manifold carried by the second sheath and communicating with the lumen, the manifold including a quick exchange coupling, the quick exchange coupling being sized and configured to mate with the quick exchange coupler of the tubing set, the quick exchange coupling of the manifold including an element that opens the normally closed one way valve in response to mating with the quick exchange coupler to convey anhydrous CO2 from the source into the lumen, and a deflector assembly at the distal end of the first sheath in flow communication with the lumen, the deflector assembly creating a flow path for the anhydrous CO2 conveyed in the lumen across the laparoscopic lens of the second laparoscope, inserting the first laparoscope into the first sheath, inserting the second laparoscope into the second sheath, coupling the quick exchange coupler of the tubing set to the quick exchange coupling of the manifold of the first sheath, visualizing through the first laparoscope while the deflector assembly of the first sheath conveys anhydrous CO2 across the laparoscopic lens of the first laparoscope to prevent fogging and deflect smoke and surgical debris away from the field of view of the first laparoscopic lens, exchanging the second laparoscope for the first laparoscope by decoupling the quick exchange coupler of the tubing set from the quick exchange coupling of the manifold of the first sheath, and coupling the quick exchange coupler of the tubing set to the quick exchange coupling of the manifold of the second sheath, and visualizing through the second laparoscope while the deflector assembly of the second sheath conveys anhydrous CO2 across the laparoscopic lens of the second laparoscope to prevent fogging and deflect smoke and surgical debris away from the field of view of the second laparoscopic lens.
RELATED APPLICATION [0001] This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/121,514 filed 10 Dec. 2008, and entitled “Device for Maintaining Visualization with Surgical Scopes,” which is incorporated herein by reference. This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/170,864 filed 20 Apr. 2009, and entitled “Surgical Scope Stabilizer for Use with Device for Maintaining Visualization with Surgical Scopes” which is also incorporated herein by reference. This application is also a continuation-in-part of U.S. Utility application Ser. No. 11/765,340, filed 19 Jun. 2007, which corresponds to PCT Application Serial No. PCT/US2008/067426, filed 19 Jun. 2008, the entirety of which applications are incorporated herein by reference. FIELD OF THE INVENTION [0002] The invention generally relates to surgical scopes, and, more particularly, for optimizing and maintaining visualization of a surgical field when using a surgical scope, such as, e.g., a laparoscope. BACKGROUND OF THE INVENTION [0003] Minimally invasive surgical procedures utilizing surgical scopes are desirable because they often provide one or more of the following advantages: reduced blood loss; reduced post-operative patient discomfort; shortened recovery and hospitalization time; smaller incisions; and reduced exposure of internal organs to possible contaminants. [0004] Generally, minimally invasive surgeries utilize scopes, such as laparoscopes, that permit remote visualization of a surgical site within a patient's body while the surgical procedure is being performed. During a laparoscopic procedure, the patient's abdominal or pelvic cavity is accessed through two or more relatively small incisions rather than through a single large incision that is typical in a conventional surgery. Surgical scopes, such as laparoscopes, usually consist in part of a rigid or relatively rigid rod or shaft having an objective lens at one end and an eyepiece and/or integrated visual display at the other. The scope may also be connected to a remote visual display device or a video camera to record surgical procedures. [0005] In laparoscopic surgeries, the abdomen is typically inflated with a gas through the use of an insufflator, to distend the abdominal space by elevating the abdominal wall above the internal organs and thereby create a sufficient working and viewing space for the surgeon. Carbon dioxide is usually used for insufflation, though other suitable gases may also be used. Conventional insufflators are adapted to cycle on and off to maintain a preset and suitable pressure within the patient's body cavity. [0006] The local environment within a patient's abdominal space is generally rather warm and humid, and the use of devices such as harmonic scalpels and other cutting and coagulating devices generate mist, smoke, and other debris that is released into the surgical field and often becomes suspended throughout the expanded abdominal space. Additionally, blood, bodily fluids, pieces of tissue, fat or other bodily material may come in contact with or even attach to the lens. As a result of these conditions, visualization through the scope can be significantly diminished. Typically, the only solution to fogging and debris collection on the lens is removal of the scope from the body cavity and defogging or cleaning the lens by wiping it with a cloth, warming the scope tip, or utilizing another defogging method. The need to remove the scope to defog and remove debris from the lens is inconvenient for the scope operator and the surgeon and can interrupt and undesirably prolong surgical procedures. SUMMARY OF THE INVENTION [0007] One aspect of the invention provides a view optimizing assembly having a deflector assembly with critical physical, pneumatic, and optical characteristics that make possible intra-operative defogging, surgical debris deflection, and cleaning of a laparoscope lens during minimally invasive surgery, while also maintaining visualization of the surgical site. In use, the view optimizing assembly makes possible the practice of a surgical method for maintaining clear visualization of the surgical site without removing the laparoscope 12 from the abdominal cavity for the purpose of cleaning or de-fogging its lens. [0008] Another aspect of the invention provides a view optimizing assembly having a quick exchange feature. In use, the quick exchange feature makes possible a surgical method for maintaining clear visualization that includes the ability to make a quick exchange of laparoscopes having different operating characteristics (e.g., laparoscopes with different tip angles, lengths, or diameters) entirely on the sterile operating field and without interference with the preexisting surgical set-up on the sterile operating field. The view optimizing assembly integrates with the existing suite of minimally invasive instrumentation. It does not interfere with the surgical set-up, and it requires minimal change in the process or practice of a surgical operating room (OR) team. BRIEF DESCRIPTION OF THE DRAWINGS [0009] FIG. 1A is a somewhat schematic views of a view optimizing assembly for use with a laparoscope having a 0° shaft tip. [0010] FIG. 1B is a section view of the sheath, showing internal fluid flow lumens, taken generally along line 1 B- 1 B in FIG. 1A . [0011] FIG. 2A is a somewhat schematic of a view optimizing assembly for use with a laparoscope having an angled shaft tip. [0012] FIG. 2B is a section view of the sheath, showing internal fluid flow lumens, taken generally along line 2 B- 2 B in FIG. 2A . [0013] FIG. 3A is an enlarged perspective view of a manifold that the view optimizing assembly shown in FIG. 1A or FIG. 2A incorporates, including a quick exchange coupling, and a quick exchange coupler that the tubing set shown in FIG. 1A or FIG. 2A incorporates, the coupling and the coupler being disconnected. [0014] FIG. 3B is a sectional view taken generally along line 3 B- 3 B in FIG. 3A , showing a one way check valve that is normally closed. [0015] FIG. 4A is an enlarged perspective view of the manifold including a quick exchange coupling and the quick exchange coupler of the tubing set, as shown in FIG. 3A , but now connected. [0016] FIG. 4B is a sectional view taken generally along line 4 B- 4 B in FIG. 4A , showing the one way check valve that is opened by the connection of the quick exchange coupling and connectors. [0017] FIGS. 5 A( 1 ) and 5 A( 2 ) are enlarged, exploded views of the deflector assembly for use with a laparoscope having a 0° shaft tip. [0018] FIGS. 5 B( 1 ) and 5 B( 2 ) are enlarged, exploded views of the deflector assembly for use with a laparoscope having an angled shaft tip. [0019] FIG. 6 is a schematic view of the critical physical, pneumatic, and optical characteristics of the deflector assembly shown in FIGS. 5A and 5B . [0020] FIGS. 7 to 34 illustrate a representative method including the set up and use of the view optimizing assembly using sterile technique by technicians/operating room personnel. DESCRIPTION OF THE PREFERRED EMBODIMENTS [0021] Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention, which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims. I. View Optimizing Assembly [0022] A. Overview [0023] FIGS. 1 A/ 1 B and FIG. 2 A/ 2 B show a view optimizing assembly 10 for use in association with a state of the art laparoscope 12 . In FIGS. 1 A/ 1 B, the laparoscope 12 possesses at 0° (blunt) shaft tip In FIGS. 2 A/ 2 B, the laparoscope possess an angle shaft tip (e.g., a 30° shaft tip or 45° shaft tip). The components of the view optimizing assembly 10 may be made from plastic materials (extruded and/or molded), but other suitable materials, such as metal or a composite material, or combinations thereof could be used. [0024] As will be described in greater detail, the view optimizing assembly 10 facilitates intra-operative defogging, surgical debris deflection, and cleaning of a laparoscope lens during minimally invasive surgery, while also maintaining visualization of the surgical site. The view optimizing assembly 10 is intended to be a single-use, disposable laparoscopic accessory. The view optimizing assembly 10 is desirably a sterile accessory for immediate set up and use on a sterile operating field. [0025] As shown in FIGS. 1A and 2A , the view optimizing assembly 10 comprises a multi-lumen sheath assembly 14 , which mounts over the shaft of the laparoscope 12 . The end of the shaft is sized and configured to match the size and configuration of the corresponding laparoscope 12 , having a blunt tip in FIG. 1A and angled tip in FIG. 2A . The assembly 10 includes a tubing set 16 to connect the sheath 14 to an existing anhydrous carbon dioxide (CO2) insufflation circuit. [0026] In use, the view optimizing assembly 10 makes possible the practice of a surgical method for maintaining clear visualization of the surgical site without removing the laparoscope 12 from the abdominal cavity for the purpose of cleaning or de-fogging its lens. Furthermore, the view optimizing assembly 10 also makes possible a surgical method for maintaining clear visualization that includes the ability to make a quick exchange of laparoscopes having different operating characteristics (e.g., laparoscopes with different tip angles, lengths, or diameters) entirely on the sterile operating field and without interference with the preexisting surgical set-up on the sterile operating field. The view optimizing assembly 10 integrates with the existing suite of minimally invasive instrumentation. It does not interfere with the surgical set-up, and it requires minimal change in the process or practice of a surgical operating room (OR) team. [0027] The view optimization assembly 10 desirably comes packaged for use in sterile peel away pouches (see FIG. 7 ). As also shown in FIGS. 1A and 2A , the pouches contain the components of the view optimization assembly 10 , including the sheath 14 and a manifold 18 that is assembled to the sheath 14 and that includes a quick exchange coupling 20 ; the tubing set 16 which includes a quick exchange coupler 22 that mates with the quick exchange coupling 20 on the manifold 18 ; and (optionally) a vent device 24 . [0028] B. The Sheath/Manifold Assembly [0029] As shown in FIGS. 1A and 2A , the sheath 14 /manifold 18 assembly includes a sheath 14 that is sized and configured to receive a laparoscope 12 having a prescribed tip angle, length, and diameter. The sheath 14 includes a stop 26 (see FIGS. 5 A( 2 ) and 5 B( 2 ) formed adjacent the distal end of the sheath 14 . The stop 26 prevents advancement of the laparoscope 12 beyond the distal end of the sheath 14 , so that lens at the distal end of the laparoscope 12 rests in a desired, generally coterminous alignment with the distal end of the sheath 14 . The sheath 14 also includes a locking collar 28 at its proximal end to frictionally engage the laparoscope 12 and resist axial withdrawal of the laparoscope 12 from the sheath 14 . [0030] In use, it is expected that the laparoscope 12 will be inserted into the sheath 14 by a scrub nurse during set-up for the operation (see FIGS. 8 to 11 ). The assembled laparoscopic and sheath 14 will then be handed as a unit to personnel at the operating room (OR) table at the desired time). The laparoscope 12 is then connected by personnel at the OR table in conventional fashion to a light cable 30 (which directs light to illuminate the operative field) and the camera cable 32 (which takes the image from the scope and displays it on monitors in the OR) (see FIG. 14 ). The sheath 14 is sized and configured not to interfere with this normal set-up of the laparoscope 12 . [0031] In use, the assembled laparoscopic and sheath 14 are placed as a unit through a trocar into the body cavity (e.g., the abdominal cavity), for viewing the surgical procedure as it is performed (see FIG. 16 ). [0032] As shown in FIGS. 1A and 2A , and as further shown in FIGS. 3A , the sheath 14 /manifold 18 assembly also includes the manifold 18 at the proximal end of the sheath 14 . The manifold 18 communicates with multiple lumens (five 34 to 42 ) are shown in the illustrated embodiment) formed within the wall of the sheath 14 (see FIGS. 1B and 2B . In use, the lumens 34 to 42 convey anhydrous CO2 to the distal end of the sheath 14 ; vent or exhaust air from the distal end of the sheath 14 through the manifold 18 ; and, if desired, convey sterile fluid and bursts of air to the distal end of the sheath 14 . In a representative embodiment (see FIGS. 1B and 2B ), two lumens 34 and 36 are dedicated to the transport of CO2; two lumens 40 and 42 are dedicated to venting; and one lumen 38 is dedicated to the transports of sterile fluid or air. [0033] C. The Tubing Set [0034] As previously described, the tubing set 16 includes a quick exchange coupler 22 that mates with the quick exchange coupling 20 on the manifold 18 (see FIGS. 3 A/ 3 B and 4 A/ 4 B). The tubing set 16 includes lengths of flexible medical grade tubing with individual end couplers (best shown in FIGS. 1A and 2A ) that connect to an existing CO2 insufflation circuit and, if desired, a source of sterile fluid (saline or sterile water, preferably with a “surface active agent”) on the sterile operating field (e.g., a bag or a syringe). The tubing set 16 includes a Y-connector 44 that divides the anhydrous CO2 output of the insufflation circuit in a first branch 46 for coupling to an insufflation trocar inserted in the body cavity (as will be described later), and a second branch 48 coupled to the quick exchange coupler 22 . [0035] The second branch 48 diverts a small portion of the CO2 output (e.g., 20% or less) to the quick exchange coupler 22 . [0036] As shown in FIGS. 3B and 4B , the quick exchange coupler 22 includes a one way check valve 50 that communicates with the second branch 48 of the tubing set 16 . In the illustrated embodiment, the check valve 50 comprises a ball valve. Insufflation pressure normally presses the ball valve 50 against a ball valve seat 52 (as shown in FIG. 3B ). A projection 54 in the manifold 18 displaces the ball valve 50 from the valve seat 52 when the quick exchange coupler 22 mates with the quick exchange coupling 20 on the manifold 18 (as shown in FIG. 4B ). Unseating the ball valve 50 opens flow communication through the check valve 50 . In the absence of coupling the quick exchange coupler 22 on the tubing set 16 to the quick exchange coupling 20 on the manifold 18 , the check valve 50 remains closed, normally blocking flow of CO2 through the second branch 48 . [0037] Thus, the tubing set 16 accommodates the set-up of the supply of the entire CO2 output to a insufflation trocar through the tubing set 16 , separate and independent of the connection of the tubing set 16 to the manifold 18 of the sheath 14 . [0038] As FIGS. 3A and 4A further show, a latch 56 carried on a spring-biased button 58 on the quick exchange coupler 22 “clicks” into a detent 60 on the quick exchange coupling 20 on the manifold 18 to reliably lock the coupler 22 and coupling 20 together for use, opening the check valve to flow CO2 through the second branch 48 (shown in FIGS. 4 A/ 4 B). Depressing the button 58 allows the quick exchange coupler 22 and coupling 20 to be separated, and the check valve 50 will close in response to insufflation pressure in the second branch 48 (as shown in FIGS. 3 A/ 3 B). [0039] Connection of the quick exchange coupling 20 on the manifold 18 to the quick exchange coupler 22 on the tubing set 16 is intended to occur at the OR table in the normal course, after the laparoscope 12 is connected to the light cable 30 and the camera cable 32 (see FIG. 15 ). Upon coupling, the one way check valve 50 is opened, and the manifold 18 directs the small portion of CO2 from the CO2 insufflation circuit. Disconnection of the of the quick exchange coupling 20 on the manifold 18 to the quick exchange coupler 22 on the tubing set 16 is also intended to occur at the OR table in the normal course, after a removal and/or exchange of a laparoscope 12 (see FIG. 22 ). [0040] D. The Vent Device [0041] The vent device 24 (see FIGS. 1A and 2A ) comprises a tube with an inline membrane 62 that restricts air flow through the tube. A proximal end of the tube is sized and configured to couple to a stopcock valve of a conventional trocar, as will be described later. In use, the vent device 24 provides a controlled leak of CO2 from the operating cavity, as will also be described in greater detail later. [0042] E. The Deflector Assembly [0043] 1. CO2 [0044] The sheath 14 includes at its distal end a deflector assembly 64 (see FIGS. 5 A( 1 ) and 5 A( 2 ) for a blunt shaft tip and FIGS. 5 B( 1 ) and 5 B( 2 ) for an angled shaft tip). The deflector assembly 64 projects a predetermined distance beyond the distal end of the sheath 14 , and thus also a predetermined distance beyond the lens at the distal end of the laparoscope 12 . The deflector assembly 64 communicates with the lumens in the sheath 14 . The deflector assembly 64 is sized and configured to direct the small portion of the CO2 from the insufflation circuit in a prescribed flow path and flow velocity continuously across the laparoscopic lens. [0045] The desired flow path and flow velocity of CO2 established by the deflector assembly 64 continuously across the laparoscopic lens creates a “wind shear.” The wind shear path of anhydrous CO2 prevents fogging. The desired flow path and flow velocity of CO2 established by the deflector assembly 64 continuously across the laparoscopic lens also desirably serves to deflect smoke and surgical debris away from the laparoscopic lens during surgery. [0046] 2. Physical, Pneumatic, and Optical Characteristics of the Deflector Assembly [0047] The size and configuration of the deflector assembly are defined and constrained by several, sometime overlapping considerations including (i) prescribed physical characteristics, which are imposed due to the need to access the operating environment in as minimally invasive manner as possible and to be compatible with state of the art laparoscopes and other laparoscopic surgical instruments and techniques; (ii) prescribed pneumatic characteristics, which are imposed due to the need to create a particular “wind shear” effect in terms of the flow path and flow velocity of CO2 across the laparoscopic lens; and (iii) prescribed optical characteristics, which are imposed due to the need to prevent interference with the field of view and the visualization of the operating field by the laparoscope 12 . [0048] 3. Physical Characteristics [0049] The size and configuration requirements for minimally invasive access compatible with state of the art laparoscopic instrumentation and techniques are paramount. These requirements impose constrains upon the minimum inside diameter of the sheath 14 as well as the maximum outside diameter of the sheath 14 . Because state of the art laparoscopes are provided with different shaft diameters, lengths, and lens configurations, the sheath dimensions and configuration change for compatibility with them. The view optimizing assembly 10 actually includes a family of sheath 14 /manifold 18 assemblies differently sized and configured to accommodate different classes of laparoscopes, to make possible compatibility with the families of state of the art laparoscopes that are in use. [0050] For example, state of the art laparoscopes include 10 mm laparoscopes, 5 mm laparoscopes, and, within these sizes, 0° shaft tips, 30° shaft tips, and 45° shaft tips. Further, within these classes of laparoscopes, manufacturing tolerances typically vary from scope to scope, as well as from manufacturer to manufacturer. A given sheath 14 /manifold 18 assembly for a given laparoscope class (e.g., 10 mm or 5 mm) desirably takes these typical manufacturing and manufacturer variances into account, and is desirably sized and configured to fit the largest scope variance encountered within a given laparoscope class. [0051] To maximize the fluid flow lumen area within the sheath 14 , the minimum inside diameter of a given sheath 14 must closely conform to the maximum outside diameter of the shaft of the particular state of the class of laparoscope 12 selected for use, which the sheath 14 must accommodate in a smooth, sliding fit. Further, a gap between the outside diameter of the laparoscope shaft and the inside diameter of the sheath 14 must be minimized to avoid the transport and leakage of blood and fluids from the operating field. Still further, minimizing the gap also assures that the laparoscope 12 self-centers in the sheath 14 , thereby assuring faithful and accurate visualization through the laparoscope lens. [0052] For example, for a typical laparoscope 12 in the 10 mm class, which measures 0.392 inch, the inside diameter of the sheath 14 is manufactured to 0.405 inch, providing a gap thickness of 0.0064 inch. For a 5 mm laparoscope 12 in the 5 mm class, which measures 0.196 inch, the inside diameter of the sheath 14 is manufactured to 0.218 inch, providing gap thickness of 0.011 inch. [0053] The maximum outside diameter of the sheath 14 for minimally invasive access must take into account the minimum inside diameter of the trocar, which the maximum outside diameter cannot exceed. [0054] For example, for a typical 10 mm trocar that measures 0.509 inch, the outside diameter of the sheath 14 is manufactured to 0.486 inch, providing a gap thickness of 0.0115 inch. For a typical 5 mm trocar that measures 0.324 inch, the outside diameter of the sheath 14 is manufactured to 0.300 inch, providing a gap thickness of 0.012 inch. [0055] It is desirable, given the particular size and configuration constraints of the laparoscopic instrumentation and techniques used, to maximize the outside diameter to the extent possible. This is because, together the inside and outside diameters of the sheath 14 define the wall thickness for the sheath S W . The wall thickness S W , together with the length of the sheath 14 , in turn, define the maximum area available for the transport of the CO2 and fluids by the sheath 14 . The area of the fluid flow lumen or lumens dedicated to the supply of CO2, in turn, defines the maximum flow rate of the CO2 directed by the deflector assembly 64 . The flow rate should be sufficient at a minimum, given the output of the insufflator selected for use, to supply anhydrous CO2 across the lens of the laparoscope 12 sufficient to prevent fogging. Also affecting the effectiveness of the CO2 to defog the lens, is the water content of the anhydrous CO2. Given the same flow rate, the less water that is present in the anhydrous CO2, the greater is the defogging capacity of the assembly. Further, the flow rate desirable should also be sufficient to deflect smoke and surgical debris away from the viewing field of the laparoscopic lens during surgery, so that the anhydrous CO2 directed by the deflector assembly 64 both defogs and deflects debris. [0056] Medical grade CO2 for use with conventional insufflators is typically 99% pure, that is, no more than 1% of the gas is other than CO2, and such medical grade anhydrous CO2 generally has a maximum moisture content of 25 parts per million by volume. Typically, a state of the art insufflator circuit delivers anhydrous CO2 at a max flow rate of about 20 liters per hour. Typically, the insufflator circuit will sense pressure in the circuit and cycle off when the sensed pressure is at or above 15 mmHg and cycle on when the sensed pressure is below 15 mmHg. [0057] Given the above sheath dimensions, and given the supply of typical medical grade anhydrous CO2, a flow rate of at least about 1.0 liters per minute is critical to achieving this objective. Given the above dimensions, and the supply of typical medical grade anhydrous CO2, a flow rate less than 0.8 liters per minute is not sufficient to prevent significant accumulation of moisture on the laparoscope lens. [0058] In a representative embodiment, for a sheath 14 having an inside diameter of 0.405 inch and an outside diameter of 0.486 inch, and a length of 11.25 inch (which accommodates passage of a typical 10 mm laparoscope and its own passage through a conventional trocar) (i.e., S W =0.081 inch), the total area available in the sheath wall is 0.056 square inches. Based upon required structural support within the wall (inside, outside, and radial) the total available area for lumens to transport fluids is 0.027 square inch. [0059] In a representative embodiment, the total lumen area is occupied by five lumens 34 to 42 , two for transporting CO2 ( 34 and 36 ), one for sterile fluid ( 38 ), and two for passive exhaust air venting ( 40 and 42 ). [0060] The area of each lumen can be maximized by selection of lumen geometry. In a representative embodiment, lumen geometry is generally triangular or pie shaped with rounded corners. The radial walls that separate the lumens within the sheath 14 are sized to minimize the spacing between the lumens. [0061] In a representative embodiment, CO2 transport is accomplished by two lumens 34 and 36 that extend about 175 degrees about the outer circumference of the sheath 14 and comprising a flow area of 0.013 square inches. Sterile fluid transport is accomplished by one lumen 38 comprising a flow area of 0.003 square inches. Exhaust air venting is accomplished by two lumens 40 and 42 comprising a flow area of 0.011 square inches. The distal openings of the exhaust lumens 40 and 42 desirably are spaced from the distal end of the sheath, to prevent uptake of blood and fluids. [0062] 4. Pneumatic Characteristics. [0063] As diagrammatically shown in FIG. 6 , the deflector assembly 64 must overhang the laparoscopic lens by a prescribed transverse distance, defining a deflection width X, sufficient to change the direction of CO2 flowing axially through lumens of the sheath 14 (i.e., along the axis of the laparoscope shaft) into a non-axially, transverse path across the laparoscopic lens (i.e., at an angle relative to the axis of the laparoscope shaft). Still, the distance of the deflection width X should not extend to the point that is obstructs the field of the view of the laparoscopic lens. This is an example where a pneumatic characteristic of the deflector assembly 64 overlaps with an optical characteristic. Further optical characteristics will be described in greater detail below. [0064] The deflector assembly 64 must also project axially beyond the distal terminus of the sheath 14 by a prescribed axial distance, defining an air channel distance Y, sufficient to maintain the CO2 flowing along the path bounded by the deflection width X at a distance sufficiently close (proximal) to the laparoscopic lens to achieve the desired shear flow effect, but without forming an abrupt flow bend that can lead to a reduction in the desired CO2 flow velocity. [0065] Together, the deflection width X and the channel distance Y define the pneumatic characteristics of the deflection assembly. At the desired minimum flow rate, the pneumatic characteristics create a flow path that conveys CO2 continuously across the laparoscopic lens at the desired flow velocity, in shorthand called the “wind shear.” The pneumatic characteristics of the CO2 “wind shear” across the laparoscopic lens prevent fogging, as well as desirably deflect smoke and surgical debris away from the viewing field of the laparoscopic lens during surgery. [0066] Together, the pneumatic characteristics defined by the deflection width X and the channel distance Y create an exit angle A EXIT , measured between the plane of the laparoscopic lens and the terminal edge of the deflector assembly 64 . The exit angle A EXIT must be less than a maximum angle of 45 degrees, else the flow path of the CO2 will not pass sufficiently both across and proximal to the laparoscopic lens. To maintain a desired exit angle A EXIT , the channel distance Y should be at least equal to the wall thickness of the sheath S W and should not exceed 1.5 times the wall thickness of the sheath S W . The deflection width X should be at least equally to two times the channel distance Y, but not extend into the field of view of the laparoscopic lens. [0067] 5. Optical Characteristics [0068] The optical characteristics of the deflector assembly 64 are selected (i) to not block or reduce the illuminated image of the operating field provided by the laparoscope 12 ; (ii) not decrease the intensity of the illumination provided by the laparoscope 12 on the operating field; and (iii) prevent reflection of illumination light at the lens of the laparoscope 12 . [0069] As discussed above, the maximum deflection width X takes into account one of the desirable optical characteristics; namely, the deflection width X should not obstruct the field of the view of the laparoscopic lens. [0070] To prevent the decrease of the illumination, the deflector assembly 64 is desirably made from a material having high light transmission properties (i.e., transparency), to not interfere with the passage of light through the light cable 30 onto the operating field as well as the passage of the reflected image conveyed to the camera cable 32 of the laparoscope 12 . [0071] Furthermore, the material and surface finish of the deflector assembly 64 must pose minimal reflectively to light. In a representative embodiment, the deflector assembly 64 is made from Bayer Makrolen Rx1805 with a surface finish defined as SPI/SPE A-3. [0072] 6. Orientation [0073] As before described, CO2 transport is accomplished by two lumens 34 and 36 that extend about 175 degrees about the outer circumference of the sheath 14 . For a 0° shaft tip (see FIG. 5A ), the orientation of the deflector assembly 64 relative to the laparoscopic lens is not critical. However, for angled shafts (e.g., 30° shaft tips and 45° shaft tips) (see FIG. 5B ), the orientation of the deflector assembly 64 relative to the laparoscopic lens is critical. [0074] As FIG. 5B shows, the angled tip of a typical laparoscope 12 has a high end 66 and a low end 68 . The lens slopes at the prescribed angle between the high end 66 and the low end 68 . In a laparoscope 12 having a angled tip, the illumination cable 30 (transmitting light onto the operating field) is located at the high end 66 of the angled tip, and the camera cable 32 (transmitting reflected light back to the camera) is located at the low end 68 of the angled tip. To provide the desired wind shear effect on an angled tip, it is critical that the deflector assembly 64 be oriented relative to the sloped laparoscopic lens such that the flow CO2 is directed across the sloped plane of the lens from the low end 68 of the tip toward the high end 66 of the tip. In this arrangement, the defogging and debris deflection flow path originates proximal to the camera cable 32 , which effectively comprises the eyes of the OR team. In this arrangement, the desired exit angle A EXIT directs the flow path of the CO2 both sufficiently across and proximal to the sloped plane of the laparoscopic lens to achieve optimal defogging and debris deflection. [0075] F. Sterile Fluid Flush [0076] As previously explained, if desired, the tubing set 16 can also include, connected to the quick exchange coupler 22 , a length of tubing 70 sized and configured for connection to a source 72 of sterile fluid, such as saline or sterile water (as shown in FIGS. 1A and 2A ). Preferably, the sterile fluid includes in solution a “surface-active agent” that stabilizes mixtures of oil and water (e.g., fat) by reducing the surface tension at the interface between the oil and water molecules. [0077] The quick exchange coupling 20 on the manifold 18 (see FIGS. 3 A/ 3 B and 4 B/ 4 B) can also include a port to integrally connect the sterile fluid tubing 70 to direct the sterile fluid through the separate lumen 38 in the sheath 14 to the distal end of the sheath 14 . The deflector assembly 64 directs the sterile fluid across the laparoscopic lens. [0078] As shown in FIGS. 1 A/ 2 A, the sterile fluid tubing 70 , if present, desirably includes an in-line pumping device 72 . The in-line pumping device 72 is sized and configured to be operated on demand by a person at the OR table to convey bursts of sterile fluid through the manifold 18 through the lumen to the distal end of the sheath 14 . The in-line pumping device 72 and source can be integrated and comprise, e.g., a 20 cc syringe filled with sterile fluid and connected by a tubing luer-lock on the saline tubing. Alternatively, the in-line pumping device 72 and source can be separate and comprise, e.g., a bag of sterile fluid, a spike connection on the saline tubing of the tubing set 16 to open communication with the bag in conventional fashion, and an inline squeeze bulb or the like to pump burst of sterile fluid from the bag to the quick exchange coupler 22 . [0079] In this arrangement, the deflector assembly 64 is also sized and configured to direct the burst of sterile fluid in a desired path across the laparoscopic lens. The bursts of sterile fluid serve to flush debris off the end of the lens that may eventually accumulate, thereby cleaning the lens. Thereafter, bursts of air supplied through the deflector assembly 64 by a squeeze pump 74 in the tubing set 16 (see FIGS. 1 A/ 2 A) serve to clear residual fluid droplets off the lens and away from the deflector assembly 64 to maintain the desired flow path and flow velocity of CO2 established by the deflector assembly 64 continuously across the laparoscopic lens, to maintain an acceptable view. [0080] In an illustrative embodiment (see FIGS. 5A and 5B ), the deflector assembly 64 directs the bursts of sterile fluid or air along a plurality of individual diverging channels 76 (three are shown). The diverging channels 76 distribute the bursts of sterile fluid or air in a fanning pattern across the lens of the laparoscope 12 . In the illustrative embodiment, the diverging channels 76 discharge the bursts of sterile fluid or air in a path that is generally ninety-degrees to the path of CO2. This orientation of the sterile fluid path relative to the CO2 path across the lens, optimal for effective lens cleaning, applies to both 0° shaft tips and angled tips (e.g., 30° shaft tips and 45° shaft tips). II. Use of the View Optimizing Assembly [0081] The view optimizing assembly is well suited for use as a single-use disposable laparoscopic accessory device to facilitate intra-operative defogging and debris deflection (due to the flow of anhydrous CO2) and cleaning of the lens of a laparoscope 12 (due to burst of sterile fluid, preferably including a “surface-active agent”) during minimally invasive surgery, while also maintaining visualization of the surgical site. [0082] FIGS. 7 to 34 illustrate a representative method including the set up and use of the view optimizing assembly using sterile technique by qualified technicians/operating room personnel. [0083] The procedure can be incorporated into written instructions for use that accompany the packaging. The instructions can also be supplied separately, e.g., embodied in separate instruction manuals, or in video or audio tapes, CD's, and DVD's. The instructions for use can also be available through an internet web page. [0084] The instructions can direct the OR set-up to peel open the outer pouches in which the components of the view optimizing assembly (shown in FIG. 7 ), and remove the sterile contents on the sterile field. The sheath 14 /manifold 18 assembly is removed, taking care to prevent damage to the walls of the sheath 14 or to its distal end, and also keeping the tubing set 16 and vent device 24 on the sterile field prior to making necessary connections. [0085] During set up (see FIGS. 8 and 9 ), the sheath 14 (with the manifold 18 , which is integrally connected to the sheath 14 during manufacture, called a sheath assembly) can be assembled to the corresponding laparoscope 12 . In this representative example, it is contemplated that the OR team plan to use a 0-degree laparoscope 12 (see FIGS. 8 and 9 ) and at least one angled laparoscope 12 (see FIGS. 10 and 11 ), e.g., a 30-degree and/or a 45-degree laparoscope 12 . Therefore, during set-up, a sheath assembly for each laparoscope 12 selected for use will be pre-assembled to the corresponding laparoscope 12 . [0086] As FIGS. 8 and 10 show, while gently pressing the tip of the sheath assembly against one hand or finger-tip, the laparoscope 12 can be inserted down into the sheath 14 . The sheath 14 is sized and configured so that the laparoscope 12 will slide smoothly through the sheath 14 . Insertion continues until the lens and distal rim of the laparoscope 12 seat against the stop at the distal end of the sheath 14 . The laparoscope 12 will “bottom out” inside the sheath 14 against the stop 26 , assuring correct axial alignment of the lens with the deflector assembly 64 . [0087] If the laparoscope 12 is angled (as shown in FIG. 10 ), the corresponding sheath assembly will also include an alignment fork guide 78 . The light post of the scope seats within the alignment fork guide 78 , therefore assuring correct rotational alignment between the angled lens and the deflector assembly 64 . [0088] The laparoscope 12 (now fully inserted into the sheath 14 ) the manifold 18 are supported by hand, a member of the OR set-up team rotates the locking collar 28 on the sheath assembly in the desired direction, e.g., clockwise (see FIGS. 9 and 11 ), indicated by an arrow on the locking collar 28 , until a firm stop is felt tactilely (e.g., after approximately one-third (⅓) of a turn). Registration of an alignment mark on the locking collar 28 and an alignment mark on the manifold 18 serves to visually confirm that the laparoscope 12 is secured against axial movement relative to the sheath 14 . [0089] The insufflator is set up off the sterile field. Once the patient is draped on the sterile field, and it is expected that the end of the output tubing from the insufflator (originating from the insufflator off the sterile field) will brought onto the sterile field. It is also expected that the light cable 30 and the camera cable 32 for the laparoscope 12 will be brought onto the sterile field. [0090] As FIGS. 12 and 13 generally show, the OR team makes an incision to gain access to the laparoscopic operating site within the body, e.g., into the abdominal cavity through the abdominal wall. A first trocar with a stopcock valve (which may take the form of an optical trocar) is inserted through the incision. Alternatively, according to physician preference, the first trocar can be pushed through abdominal wall with only a skin incision. The obturator (the sharp inner insert of the trocar) is removed from the first trocar once it is in position. [0091] The insufflator line of the tubing set 16 on the sterile field is connected to the output tubing of the insufflator circuit on the sterile field. The first branch 46 of the tubing set 16 on the sterile field, originating at the Y-connector 44 , is coupled to the stopcock valve of the first trocar (see FIG. 13 ). The stopcock valve is opened, and the insufflator is turned on. CO2 output of the insufflation circuit inflates the abdomen through the first trocar. [0092] During this time (see FIGS. 8 and 10 ), the second branch 48 of the tubing set 16 on the sterile field, also originating at the Y-connector 44 , and the quick exchange coupler 22 integrally attached to it can remain on the sterile field in a free, unconnected condition as the insufflator supplies CO2 through the first branch 46 . The one-way check valve in the quick exchange coupler 22 serves to block flow of CO2 through the second branch 48 , even as the insufflator supplies CO2 through the first branch 46 . The entire CO2 pressure of the insufflator circuit is, at the present, delivered to the first trocar through the first branch 46 . [0093] The first laparoscope 12 selected for use, which has been pre-inserted into the sheath 14 by the OR set-up team as just described, is handed to personnel at the OR table at the appropriate time. On the sterile field, personnel at the OR table connect the light cable 30 and the camera cable 32 to the laparoscope 12 (see FIG. 14 ). On the sterile field, personnel at the OR table now connect the quick exchange coupler 22 of the tubing set 16 to the quick exchange coupling 20 of the manifold 18 (see FIG. 15 ). The one way valve opens, and a small portion of the output of the insufflator circuit is routed by the second branch 48 through the manifold 18 into to the sheath 14 . [0094] The laparoscope/sheath assembly is then placed as an integrated unit through the first trocar to get an initial view of the abdominal cavity (see FIG. 16 ). Due to the technical features of the deflector assembly 64 , CO2 flows over the lens, eliminating fogging and also deflecting away debris. If present, the pump (e.g., the 20 cc syringe) filled with sterile fluid (preferably with a “surface-actuve agent”) and connected to the tubing luer-lock, can be operated by personnel at the OR table to flush sterile fluid through the deflector assembly 64 of the sheath 14 . The deflector assembly 64 directs the fluid bursts across the lens in a path generally 90-degrees offset from the CO2 path. Once this is done, the bulb on the tubing set 16 can be pumped several times introduce bursts of air to clear droplets off the lens and away from the tip deflector, to maintain to the continuous directed flow of CO2 across the laparoscopic lens. [0095] Once a satisfactory view is achieved, additional ancillary trocars with stopcock valves, e.g. three to four, or more, are also placed through incisions to provide access for other instruments (see FIG. 17 ). The trocar vent device 24 provided with the view optimizing assembly is desirably placed in the stopcock of one of the ancillary trocars, and the stopcock valve is opened (see FIG. 18 ). [0096] As FIG. 19 shows, a member of the OR team preferable decouples the main insufflation line (the first branch 46 tubing of the Y-connector 44 of the tubing set 16 ) from the first trocar to the stopcock valve of another available trocar on the sterile field (except the trocar to which the vent device 24 is coupled). This other trocar then serves as the main insufflation trocar, separate from the first trocar, which now serves as the main visualization trocar. In this way, the main CO2 insufflation provided for the duration of the surgery is provided by an insufflation trocar that is also not the visualization trocar. The controlled leak of insufflation pressure that the vent device 24 provides creates a pressure gradient within the pneumo-peritoneum that helps maintain a generally continuous flow of CO2 from the deflector assembly 64 across the lens, despite periodic cycling of the insufflator. Lumens 40 and 42 in the sheath 14 (previously described) can also serve as additional passive vents, to leak insufflation pressure out through the manifold 18 . [0097] The surgery proceeds. The deflector assembly 64 provides intra-operative defogging and cleaning of the laparoscope lens during the minimally invasive surgery, while maintaining visualization of the surgical site. The sterile fluid flush mechanism can be used, as desired, if required to augment visualization by flushing the lens. If this is done, the bulb on the tubing set 16 should be pumped several times to clear droplets off the lens and away from the deflector assembly 64 to maintain the CO2 curtain across the lens. [0098] During the surgery, the OR team can decide, e.g., that one portion of the procedure is better visualized with a different angle scope. The quick exchange features of the coupler of the tubing set 16 and the coupling of the manifold 18 , greatly facilitate the exchange of one laparoscope 12 for another with minimal interruption of the surgical procedure and without compromising the sterile field. [0099] To exchange one laparoscope 12 for another, a member of the OR team withdraws the laparoscope/sheath assembly an integrated unit from the visualization trocar (see FIG. 20 ).). A member of the OR team disconnects the laparoscope 12 from the light cable 30 and camera cable 32 (see FIG. 21 ). A member of the OR team uncouples the quick exchange coupler 22 from the quick exchange coupling 20 , freeing the laparoscope/sheath assembly from the tubing set 16 (see FIG. 22 ). The disconnected laparoscope/sheath assembly is handed as an integrated unit to a member of the OR team, e.g., a scrub nurse (see FIG. 23 ). There is no reason to remove the sheath 14 from the matching laparoscope 12 at this time. This can be accomplished later, after the surgery is all done. [0100] The laparoscope/sheath assembly that includes the second laparoscope 12 that is to be used, has already been assembled into an integrated unit, as previously described. This pre-assembled unit is handed to a member of the OR team (see FIG. 24 ). A member of the OR team connects the second laparoscope 12 to the light cable 30 and camera cable 32 (see FIG. 25 ). A member of the OR team couples the quick exchange coupler 22 of the tubing set 16 to the quick exchange coupling 20 , connecting the second laparoscope/sheath assembly in flow communication with the tubing set 16 (see FIG. 26 ), completing the quick exchange. The second laparoscope/sheath assembly is inserted into the visualization trocar (see FIG. 27 ). [0101] The quick connect feature functions with a manifold 18 associated with every sheath 14 . The tubing set 16 on the sterile field can be rapidly disconnected, but need not, and desirably is not, exchanged with another tubing set 16 . During a given surgical procedure, the same tubing set 16 serves every laparoscope/sheath assembly used (unneeded tubing sets 16 that came with the additional sheaths can be simply discarded). [0102] The surgery proceeds using the second laparoscope/sheath assembly. [0103] Additional quick exchanges of laparoscopes can be accomplished as surgery proceeds in the manner just described. [0104] Once surgery is completed, all instruments, including the laparoscope/sheath assembly in use are removed from the visualization trocar (see FIG. 28 ). A member of the OR team disconnects the laparoscope 12 from the light cable 30 and camera cable 32 (see FIG. 29 ). A member of the OR team uncouples the quick exchange coupler 22 from the quick exchange coupling 20 , freeing the laparoscope/sheath assembly from the tubing set 16 . The laparoscope/sheath assembly is handed to a member of the OR team (see FIG. 31 ), and placed alongside previously used laparoscope/sheath assemblies (see FIG. 32 ). [0105] Access sites are closed. The insufflator is shut off. The tubing set 16 is disconnected from the insufflator circuit. The lock collars on the manifolds 18 are loosened, and laparoscopes are withdrawn from the sheaths for reuse ( FIG. 33 ). The sheaths and tubing set 16 are disposed of ( FIG. 34 ). [0106] Some trocars are called “optical trocars” that have a lumen within the obturator, that is within the trocar. If the lens of a laparoscope 12 is first placed into the center of an optical trocar to guide the first trocar insertion, then the sheath 14 cannot be present on the laparoscope 12 , as the combination cannot fit through the lumen of the obturator. In this situation, the laparoscope 12 is used without a sheath 14 is used to place the first trocar. The laparoscope 12 is then inserted through the sheath 14 , and connection of the tubing set 16 occurs in the manner just described. With the obturator removed from the trocar, the laparoscope/sheath assembly is placed through the first trocar in the manner described.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (103)

    Publication numberPublication dateAssigneeTitle
    US-2005119528-A1June 02, 2005Weinberg Andrew M.Colonoscope apparatus and method
    US-4794911-AJanuary 03, 1989Olympus Optical Company Ltd.Means to facilitate detachably mounting cap to distal end of endoscope
    US-2005065405-A1March 24, 2005Olympus CorporationDevice for and method of cleaning and disinfecting endoscope
    US-5009655-AApril 23, 1991C. R. Bard, Inc.Hot tip device with optical diagnostic capability
    US-2006041186-A1February 23, 2006Vancaillie Thierry GContinuous flow single sheath for endoscope
    US-6882236-B2April 19, 2005Magneto-Inductive Systems LimitedDynamically tuned amplifier for frequency shift keyed signals
    US-5637075-AJune 10, 1997Hamamatsu Ent SurgicenterApparatus for observing inside of body cavity
    US-4279246-AJuly 21, 1981Machida Endoscope Co., Ltd.Device for preventing clouding of an observing window
    US-5312400-AMay 17, 1994Symbiosis CorporationCautery probes for endoscopic electrosurgical suction-irrigation instrument
    US-6695772-B1February 24, 2004Visionary Biomedical, Inc.Small diameter cannula devices, systems and methods
    US-6234635-B1May 22, 2001Michael R. Seitzinger, David PlattsMethod for preventing laparoscope fogging
    US-5869107-AFebruary 09, 1999Tanaka Kikinzoku Kogyo K.K., Nissan Motor Co., Ltd.Fabrication machine of optical fiber
    US-4991565-AFebruary 12, 1991Asahi Kogaku Kogyo Kabushiki KaishaSheath device for endoscope and fluid conduit connecting structure therefor
    US-6984204-B2January 10, 2006Fujinon CorporationLiquid feed device for use on endoscopes
    US-4207874-AJune 17, 1980Choy Daniel S JLaser tunnelling device
    US-5279549-AJanuary 18, 1994Sherwood Medical CompanyClosed ventilation and suction catheter system
    US-5746695-AMay 05, 1998Asahi Kogaku Kogyo Kabushiki KaishaFront end structure of endoscope
    US-4741326-AMay 03, 1988Fujinon, Inc.Endoscope disposable sheath
    US-2012165610-A1June 28, 2012Minimally Invasive Devices, LlcSystems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
    US-5605532-AFebruary 25, 1997Vista Medical Technologies, Inc.Fog-free endoscope
    US-5207213-AMay 04, 1993Circon CorporationLaparoscope having means for removing image impeding material from a distal lens
    US-6176825-B1January 23, 2001Origin Medsystems, Inc.Cannula-based irrigation system and method
    US-6071606-AJune 06, 2000Nissan Motor Co., Ltd, Central Glass Company, LimitedHydrophilic film and method for forming same on substrate
    US-6712759-B2March 30, 2004Acmi CorporationOutflow system for an endoscope
    US-4497550-AFebruary 05, 1985Kabushiki Kaisha Medos KenkyushoDevice for preventing the observing objective lens window of an endoscope from collecting moisture
    US-6361492-B1March 26, 2002Kapp Surgical Instrument, Inc.Surgical stabilizer
    US-6383134-B1May 07, 2002Albert N. SantilliSurgical stabilizer having suction capability
    US-5297537-AMarch 29, 1994Endoscopy Support Services, Inc.Disposable liquid supply kit for use in an endoscope
    US-3373736-AMarch 19, 1968Smith Kline French LabSigmoidoscope and illuminating means therefor
    US-5514084-AMay 07, 1996Fisher; YaleRetractable wipe for cleaning endoscopic surgical devices
    US-4633855-AJanuary 06, 1987Olympus Optical Co., Ltd.Endoscope apparatus
    US-511942-AJanuary 02, 1894Insole
    US-2012022331-A1January 26, 2012Minimally Invasive Devices, LlcSystems and Methods for Optimizing and Maintaining Visualization of a Surgical Field During the Use of Surgical Scopes
    US-6857436-B2February 22, 2005Princeton Trade & Technology, Inc.Method of cleaning passageways using a mixed phase flow of a gas and a liquid
    US-6712757-B2March 30, 2004Stephen BeckerEndoscope sleeve and irrigation device
    US-6017333-AJanuary 25, 2000Bailey; Robert W.Irrigating laparoscopic cannula
    US-4637814-AJanuary 20, 1987Arnold LeiboffMethod and apparatus for intestinal irrigation
    US-5201908-AApril 13, 1993Endomedical Technologies, Inc.Sheath for protecting endoscope from contamination
    US-5320091-AJune 14, 1994Circon CorporationContinuous flow hysteroscope
    US-5518502-AMay 21, 1996The United States Surgical CorporationCompositions, methods and apparatus for inhibiting fogging of endoscope lenses
    US-5868663-AFebruary 09, 1999Asahi Kogaku Kogyo Kabushiki KaishaFront end structure of side-view type endoscope
    US-6889400-B2May 10, 2005One Step Co., Ltd.Cleaning member for medical tubes, porous member for cleaning treatment appliance insertion lumen of endoscope, and cleaning apparatus for cleaning treatment appliance insertion lumen of endoscope
    US-5386817-AFebruary 07, 1995Endomedical Technologies, Inc.Endoscope sheath and valve system
    US-D535743-SJanuary 23, 2007Arthur Myles WilliamsVein stabilizer device
    US-6409657-B1June 25, 2002Fuji Photo Optical. Co., Ltd.Cleaning device for cleaning view window of endoscope
    US-2004034339-A1February 19, 2004The Regents Of The University Of CaliforniaDevice for improved visualization of operative sites during surgery
    US-5019054-AMay 28, 1991Mectra Labs, Inc.Medical device valving mechanism
    US-5313934-AMay 24, 1994Deumed Group Inc.Lens cleaning means for invasive viewing medical instruments
    US-5630795-AMay 20, 1997Olympus Optical Co., Ltd.Cleaning tube apparatus for endoscope
    US-4548197-AOctober 22, 1985Olympus Optical Co., Ltd.Air and liquid supplying device for endoscope
    US-2008108871-A1May 08, 2008Mohr Catherine JVacuum stabilized overtube for endoscopic surgery
    US-2009113644-A1May 07, 2009New Wave SurgicalMethod and apparatus for cleaning the interior cannula of laparoscopic and endoscopic access devices
    US-6712479-B1March 30, 2004Innovative Surgical Technology, Inc.Method for preventing laparoscope fogging
    US-4748970-AJune 07, 1988Olympus Optical Co., Ltd.Endoscope systems
    US-5575753-ANovember 19, 1996Olympus Optical Co., Ltd.Endoscopic apparatus using a covered type endoscope fitted in an endoscope cover
    US-4735603-AApril 05, 1988James H. GoodsonLaser smoke evacuation system and method
    US-6755782-B2June 29, 2004Olympus CorporationEndoscope dirt remover
    US-2008051631-A1February 28, 2008Olympus Medical Systems Corp.Medical treatment endoscope
    US-D486910-SFebruary 17, 2004Pentax CorporationEndoscope
    US-5865730-AFebruary 02, 1999Ethicon Endo-Surgery, Inc.Tissue stabilization device for use during surgery having remotely actuated feet
    US-D369862-SMay 14, 1996Pos-T-Vac, Inc.Compact manual vacuum pump
    US-5306272-AApril 26, 1994Neuro Navigational CorporationAdvancer for surgical instrument
    US-2006047184-A1March 02, 2006Scimed Life Systems, Inc.Endoscope having auto-insufflation and exsufflation
    US-6752755-B2June 22, 2004Fuji Photo Optical Co., Ltd.Endoscope and endoscope cap with recessed focal point
    US-5697888-ADecember 16, 1997Olympus Optical Co., Ltd.Endoscope apparatus having valve device for supplying water and gas
    US-6354992-B1March 12, 2002Daniel T. KatoAutomated laparoscopic lens cleaner
    US-7927271-B2April 19, 2011C.R. Bard, Inc.Endoscope tool coupling
    US-2005059981-A1March 17, 2005Poll Wayne L.Fragmentation and extraction basket
    US-7198599-B2April 03, 2007Olympus CorporationEndoscope apparatus
    US-6699185-B2March 02, 2004Karl Storz Gmbh & Co. KgMedical endoscopic instrument
    US-7341556-B2March 11, 2008M.S. Vision Ltd.Endoscope with cleaning optics
    US-5392766-AFebruary 28, 1995Innerdyne Medical, Inc.System and method for cleaning viewing scope lenses
    US-2002058858-A1May 16, 2002Olympus Optical Co., Ltd.,Endoscope
    US-4800869-AJanuary 31, 1989Olympus Optical Co. Ltd.Endoscope
    US-2005113797-A1May 26, 2005Ott Douglas E., Spearman Patrick R., Gray Robert I., Lloyd Duane E.Method and apparatus for delivering an agent to the abdomen
    US-2005137529-A1June 23, 2005Mantell Robert R.System and method for delivering a substance to a body cavity
    US-2008021277-A1January 24, 2008David Stefanchik, Ghabrial Ragae MMethods for stabilizing and positioning an endoscope and surgical procedures
    US-5894369-AApril 13, 1999Fuji Photo Optical Co., Ltd.Lens device with anti-fogging
    US-6582357-B2June 24, 2003Pentax CorporationTreating instrument erecting device for use in endoscope
    US-D534655-SJanuary 02, 2007Karl Storz Gmbh & Co. KgLight source for medical purposes
    US-2009018602-A1January 15, 2009Vladimir Mitelberg, Jones Donald K, Yuan David Y, Naglreiter Brett E, Gilkey J Landon, Gostout Christopher J, Pasricha Pankaj JMethods And Systems For Performing Submucosal Medical Procedures
    US-7169167-B2January 30, 2007Scimed Life Systems, Inc.Endoscopic apparatus and method
    US-5400767-AMarch 28, 1995Murdoch; Mervyn J.Laparoscopic telescope lens cleaner and protector
    US-D277505-SFebruary 05, 1985Olympus Optical Co., Ltd.Endoscope
    US-2008086704-A1April 10, 2008Veveo, Inc.Methods and systems for a Linear Character Selection Display Interface for Ambiguous Text Input
    US-D346023-SApril 12, 1994Manually actuated vacuum pump for male sexual disfunction
    US-D277408-SJanuary 29, 1985Olympus Optical Company, Ltd.Light guide for endoscope
    US-6040053-AMarch 21, 2000Minnesota Mining And Manufacturing CompanyCoating composition having anti-reflective and anti-fogging properties
    JP-2000225093-AAugust 15, 2000Fuji Photo Optical Co Ltd, 富士写真光機株式会社管路を有する内視鏡装置
    US-2002072652-A1June 13, 2002George Berci, Markus Lipp, Christian Pradel, Monika DaublanderApparatus for introducing an intubation tube into the trachea
    US-D284028-SMay 27, 1986Warner-Lambert CompanySigmoidoscope
    US-2008081948-A1April 03, 2008Ethicon Endo-Surgery, Inc.Apparatus for cleaning a distal scope end of a medical viewing scope
    US-2002022762-A1February 21, 2002Richard Beane, Demetrius Litwin, Steven Ek, Allison Niemann, Melinda TaylorDevices and methods for warming and cleaning lenses of optical surgical instruments
    US-2004082915-A1April 29, 2004Kadan Jeffrey S.Diagnostic needle arthroscopy and lavage system
    US-2005043683-A1February 24, 2005Biagio RavoTrocar with integral irrigation and suction tube
    US-2004059363-A1March 25, 2004Alvarez Edgardo L., Reuben SetliffSystem and method for performing irrigated nose and throat surgery
    US-6989183-B2January 24, 2006Malessa Partners, L.L.C.Integrated forms and method of making such forms
    US-7223231-B2May 29, 2007Fujinon CorporationAnti-twist casing for endoscopic manipulating head assembly
    US-2006052661-A1March 09, 2006Ramot At Tel Aviv University Ltd.Minimally invasive control surgical system with feedback
    US-D613403-SApril 06, 2010Minimally Invasive Devices, LlcSheath tip for maintaining surgical scope visualization
    US-2006020165-A1January 26, 2006Medtronic Xomed, Inc.Disposable endoscope sheath having adjustable length
    US-2006252993-A1November 09, 2006Freed David I, Golden John B, Chu Michael S, Carrillo Oscar R Jr, Yem Chin, Adams Mark L, Morris Benjamin E, Wells Brian K, Hall Todd A, Furnish Gregory R, Abramov Vasiliy P, Mers-Kelly William CMedical devices and systems
    US-4998527-AMarch 12, 1991Percutaneous Technologies Inc.Endoscopic abdominal, urological, and gynecological tissue removing device

NO-Patent Citations (0)

    Title

Cited By (17)

    Publication numberPublication dateAssigneeTitle
    US-2014100421-A1April 10, 2014Fox Chase Cancer Center, Fujifilm CorporationMethod of placing medical insertion instruments in body cavity
    US-8882662-B2November 11, 2014Camplex, Inc.Interface for viewing video from cameras on a surgical visualization system
    US-9050036-B2June 09, 2015Minimally Invasive Devices, Inc.Device for maintaining visualization with surgical scopes
    US-9050037-B2June 09, 2015Minimally Invasive Devices, Inc.View optimizer and stabilizer for use with surgical scopes
    US-9078562-B2July 14, 2015Minimally Invasive Devices, Inc.Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
    US-9211059-B2December 15, 2015Minimally Invasive Devices, Inc.Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
    US-9216068-B2December 22, 2015Camplex, Inc.Optics for video cameras on a surgical visualization system
    US-9492065-B2November 15, 2016Camplex, Inc.Surgical retractor with video cameras
    US-9522017-B2December 20, 2016Minimally Invasive Devices, Inc.Devices, systems, and methods for performing endoscopic surgical procedures
    US-9615728-B2April 11, 2017Camplex, Inc.Surgical visualization system with camera tracking
    US-9629523-B2April 25, 2017Camplex, Inc.Binocular viewing assembly for a surgical visualization system
    US-9642606-B2May 09, 2017Camplex, Inc.Surgical visualization system
    US-9681796-B2June 20, 2017Camplex, Inc.Interface for viewing video from cameras on a surgical visualization system
    US-9723976-B2August 08, 2017Camplex, Inc.Optics for video camera on a surgical visualization system
    US-9782159-B2October 10, 2017Camplex, Inc.Surgical visualization systems
    US-9839349-B2December 12, 2017Fujifilm Corporation, The Institute For Cancer ResearchMethod of placing medical insertion instruments in body cavity
    WO-2014151824-A1September 25, 2014Minimally Invasive Devices, Inc.Fluid dispensing control systems and methods